SCHEME AND SYLLABUS

For I and II SEMESTERS UNDER GRADUATE COURSE IN CHEMISTRY (Bachelor of Science)

Framed as per the State Education Policy

(SEP-2024)

(Effective from the Academic Year 2024-2025)

BANGALORE UNIVERSITY

Department of Chemistry Jnanabharathi Campus Bengaluru - 560 056

July 2024

FOREWORD

In accordance with the directive from Bangalore University, the Chemistry syllabus for the B.Sc. degree course (SEP-24) was revised. The Bangalore University provided comprehensive guidelines to ensure the curriculum meets contemporary academic standards with applied component.

At the Department of Studies in Chemistry, Bangalore University, a collaborative effort was undertaken with the Chemistry Teachers Forum to form a Core Group comprising faculty from the University Department and affiliated colleges. This Core Group engaged in detailed discussions during Zoom meetings held on 08.06.2024 and 18.06.2024, respectively. The objective was to align the syllabus with the UGC Model Curriculum, which emphasizes interdisciplinary skills, integration of general studies with professional courses, and providing both vertical and horizontal mobility while addressing local educational needs. Faculty members specializing in Inorganic, Organic, and Physical Chemistry conducted both separate and joint brainstorming sessions. These sessions were instrumental in developing a comprehensive draft syllabus for both I and II semesters. The Chemistry Teachers' Forum designed this syllabus by ensuring to allow for flexibility in programme, diverse perspectives and educational requirements of the students. Notably, regularly updating the curriculum reflects the commitment to providing high-quality education, fostering a learning environment that promotes critical thinking, innovation, and excellence. Finally, the syllabus revision process not only enhances the academic framework but also ensures that students are equipped with relevant knowledge and skills to meet future challenges and opportunities in the field of Chemistry

The initial Draft Syllabus was shared with a broader group of teachers on 28th June 2024 for further refinement. The final draft, incorporating suggestions from the wider teaching community, was presented to the Department Council on 02.07.2024 of Department of Chemistry, Bangalore University. Following this, it was submitted to the Board of Studies in Chemistry (UG) on 04.07.2024 for approval. I, sincerely, hope that the present syllabus will be a guiding force for the undergraduate students enrolled under Bangalore University Curriculum for years to come.

CHAIRMAN

Department of Studies in Chemistry Jnanabharathi Campus Bangalore University Bengaluru-560 056

Members of the Committee for the Preparation of the Chemistry Syllabus for the B. Sc., Degree Course (Semester Scheme-SEP)

INORGANIC CHEMISTRY SECTION					
Dr. Muddukrishna K R	GFGC, Vijayanagara, Bengaluru				
Mrs. Shubha Shashikanth	GFGC, Vijayanagara, Bengaluru				
Dr. Nalini R	GFGC, K. R Puram, Bengaluru				
Dr. Sanjeevarayappa	GFGC, Yelahanka, Bengaluru				
Dr. Sowbhagya	Bangalore University				
ORGANIC CHEMISTRY SECTION					
Dr. Vasudeva Reddy	GFGC, Vijayanagara, Bengaluru				
Dr. Lakshmidevi	GFGC, Ramanagara,				
Dr. Sumaiya Tabassum	Surana College, Bengaluru				
Dr. Shalini K. S	Maharani's Cluster University, Bengaluru				
Dr. Dinesh	Aurigine India Pvt Ltd, Bengaluru				
PHYSICAL C	HEMISTRY SECTION				
Prof. G. Krishnamurthy	Bangalore University				
Dr. Nagegowda P	GFGC, Channapatna				
Dr. Yogeesha N	GFGC, Ramanagara				
Dr. Nebula Murukesh	St. Francis de Sales College, Electronic city, Bengaluru				

Proceedings of the Meeting of Board of Studies in Chemistry (UG) held on 4th July 2024 at 10.30 am in the Department of Chemistry, Jnanabharathi Campus, Bangalore-560 056.

The Chairman welcomed the members of the Board to the meeting and placed the agenda before them for discussion.

Agenda: 1. Scrutiny and approval of the Syllabus for the B. Sc., Degree, Chemistry Course

The Chairman informed the members that, as per the directive from the Bangalore University, the Chemistry syllabus for the B. Sc., degree has been prepared with the help of the Chemistry Teachers' Forum which constituted a Core Group form affiliated Colleges, is proposed to be introduced from 2024 onwards. In this connection, the Core Group of Teachers participated in the zoom meeting held on 08.06.2024 and 18.06.2024 and prepared a Draft syllabus. The syllabus was then finalized in a meeting conducted on 28th May 2024 in the presence of a wider group of Teachers represented by most of the colleges offering Chemistry at UG level. The draft syllabus was then placed before the Department Council on 02.07.2024 for approval, the approved syllabus is now placed before the Board for Scrutiny and approval. The Board of Studies (UG) approved the Syllabus after some modifications.

The meeting ended with the vote of thanks by the Chairman.

The following members were present

- 1. Dr. K Vasudeva Reddy
- 2. Dr. Lakshmi Devi V
- 3. Dr. Muddukrishna K R
- 4. Mrs. Shubha Shashikanth
- 5. Dr. Nagegowda P
- 6. Dr. Yogeesha N.
- 7. Dr. Shalini K S.
- 8. Dr. Dinesh C
- 9. Dr. Shivaraj Y C

Not present

Chairman, (BOS, UG)

COURSE PATTERN AND SCHEME OF EXAMINATION

Title of the paper	Teaching hours	Contact hours/Week	Exam. hours	IA	Marks	Total Marks	Credits		
First Semester									
Chemistry-I CHEMT-01	56	4	3	20	80	100	4		
Chemistry Practical-I CHEMP-01	56	3	3	10	40	50	2		
		Second	d Semester	r					
Chemistry-II CHEMT-02	56	4	3	20	80	100	4		
Chemistry Practical-II CHEMP-02	56	3	3	10	40	50	2		

B.Sc. Chemistry as per SEP-2024 for I and II Semester

Scheme of Evaluation

Practical Examination :

Sl. no.	Examination particulars	Marks allotted
1	Experimental performance	25
2	Procedure Writing	05
3	Record assessment	05
4	Oral performance (Viva-voce)	05
	Total	40

Internal Assessment Marks : Practicals

Sl no.	Particulars	I A Marks
1	Practical Test	06
2	Active participation in practical classes	04
	Total Practical IA marks	10

Sl no.	Particulars	I A Marks
1	Attendance	05
2	Internal Tests (Minimum of Two)	10
3	Assignments/Seminars	05
Total Theory	20	

Internal Assessment Marks : Theory

Department of	After successful completion of three year degree program in Chemistry a
-	
Chemistry	student should be able to;
Programme	PO-1. Understand the basic principles of various branches of chemistry.
outcomes (POs)	PO-2. Demonstrate a range of practical skills to conduct and infer
	experiments independently and in groups.
	PO-3. Apply the key concepts and standard methodologies to solve
	problems related to chemistry.
	PO-4. Apply methodologies to the solution of unfamiliar types of problems.
	-
	PO-5. Exhibit skills leading to employability in Chemistry and allied industries
	PO-6. Comprehend the fundamental aspects of research in Chemistry.
	PO-7. Identify chemical formulae and solve numerical problems.
	PO-8. Possess the level of proficiency in subject required for post
	graduation as well as for pursuing research in Chemistry and
	related interdisciplinary subjects.
	PO-9. Introducing Students to modern techniques, various equipments
	and Chemical softwares.
	PO-10. Design solutions stemming from the application of chemistry to
	local issues.
	PO-11. Understand good laboratory practices and safety.
	PO-12. Opportunity to the students for getting job in industries besides
	academic and administrative works.

I Semester

Title of the Course	Chemistry-I (Theory)	Course Code	CHEMT-01
Total Contact hours/Sem	56	Teaching Hours/week	4 hrs
No. of Credits	04	Duration of Examination	03 hrs
Formative Assessment marks	20	Summative Assessment Marks	80

First Semester B.Sc. (Chemistry)

Course Outcomes (Cos) :

By the end of the course, the students will be able to:

- 1. Understanding of the Fundamentals of Analytical Chemistry and use of SI units and its conversion.
- 2. Review the modern periodic table and periodic properties
- 3. Knowledge of p, d and f block elements
- 4. Basic concepts in organic chemistry and aliphatic hydrocarbons
- 5. Understand the concept of Gases, liquids and solutions

<u>Contents of the Course</u> <u>UNIT-I</u>

Analytical Chemistry

Definitions of the Basic Units: Mass, Length, Time, Temperature, Amount of substance, Derived units, conversion between units.

Chemical concentrations: Molar concentration, analytical molarity, equilibrium molarity of a particular species, Percent concentration, parts per million/billion (ppm/ppb), volume ratios for dilution procedures.

Preparation of solutions: standard solutions, primary standards, secondary standards.

Definitions of analysis, determination, measurement, techniques and methods. Classification of analytical techniques. Choice of an analytical method - accuracy, precision, sensitivity, selectivity and method validation.

Errors and treatment of analytical data: Limitations of analytical methods – Errors: Determinate and indeterminate errors, absolute error, relative error, minimization of errors. Statistical treatment of finite samples -mean, median, range, standard deviation and variance. Standard calibration curve - correlation coefficient (R^2). Numerical problems.

UNIT-II

Periodic table and Periodic properties

Review of the modern periodic table and Periodic Properties

Comparative study of elements of alkali and alkaline earth metals, chalcogens and halogens with respect to electronic configuration, atomic and ionic radii, ionisation energy and electronegativity.

14 hours

8 hours

Introduction: Maxwell-Boltzmann distribution law, mathematical expression for both

Group-13: Structure of diborane and higher Boranes (B_4H_{10} and B_5H_9), Boron nitrogen compounds ($B_3N_3H_6$ and BN), Lewis acid nature of BX₃. Group – 14: Carbides; Classification as ionic, covalent, interstitial. Structures and reactivity.

Industrial applications. Silicones; Classification – straight chain, cyclic and cross-linked. Group – 15: Nitrides – Classification – ionic, covalent and interstitial. Reactivity – hydrolysis. Reactions of hydrazine, hydroxyl amine, phosphazenes.

General study of d and f block elements.

Transition elements: electronic configuration, atomic and ionic radii, ionization energy, oxidation states, redox potentials, spectral and magnetic properties, catalytic activity, interstitial compound formation. Lanthanides and Actinides: Electronic configuration, atomic and ionic sizes, lanthanide contraction and its consequences. Oxidation states, spectral and magnetic properties, complex formation and magnetic properties of d and f block elements. Ion exchange method for separation of Lanthanides.

Noble gases

Introduction, isolation of Helium from natural gas, applications of noble gases. Preparation, properties and structures of fluorides and oxides of Xenon (XeF₂, XeF₄, XeF₆, XeO₃, XeO₄).

<u>Unit-III</u>

3 hours Basic concepts in organic chemistry: Bond cleavage. Types of reagents. Reactive intermediates - generation and relative stabilities of carbocation, carbanion, carbon free radicals and carbenes. Explanation inductive, resonance and hyperconjugation effects. Types of reactions. Concept of isomerism - structural isomerism, stereo isomerism.

Aliphatic Hydrocarbons

Gaseous state

Alkanes: Sources, nomenclature of branched chain alkanes, preparation of alkanes, conformations of ethane, propane and butane, conformation and stability of 1,2-dichloroethane, ethylene glycol and acetaldehyde.

Cycloalkanes: Nomenclature. Method of formation, explanation for stability based on heat of hydrogenation data, Baeyer's strain theory and its limitation, Sachse - Mohr theory of strain-lessrings; cyclopropane ring - banana bonds. Conformations of cyclohexane, Geometrical isomerism in 1,2- dimethylcyclopropane and 1,2-dimethylcyclohexane.

Alkenes: Preparation of alkenes by Wittig reaction-stereoselectivity. Markownikov's rule and Antimarkownikov's rule with mechanism. Reactions: Hydroboration- oxidation, reduction, oxymercuration-demercuration, epoxidation. Mechanism of oxidation with KMnO₄ and OsO₄.

Dienes: Classification. Structure of allene and butadiene.1,2 addition and 1,4 addition reactions. Diels Alder reaction-1,3-butadiene with maleic anhydride.

Alkynes: Preparation-Acetylene from CaC_2 and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides. Reactions: alkylation of terminal alkynes and conversion to higher alkynes, ozonolysis and oxidation with hot alk. KMnO₄.

<u>Unit-IV</u>

p-Block Elements

11 hours

4 hours

3 hours

10

mole and molecule (explanation of the terms only). Explanation of velocity distribution curves based on this law (no derivation). Mean free path, collision frequency and collision number. Derivation of expression for most probable speed from Maxwell-Boltzmann equation. Definitions and expressions for RMS velocity. Numerical problems.

Andrew's isotherm on carbon dioxide and explanation of the curves (no experimental details). Derivation of critical constants T_c , P_c and V_c from van der Waal's equation and their experimental determination by Cagniard de La Tour method for T_c and P_c . Amagat's mean density method for V_c . Problems on the calculation of T_c , P_c and V_c , *a* and *b*.

Law of corresponding states-statements, reduced equation of state and explanation, Joule-Thomson effect-explanation. Joule-Thomson co-efficient, inversion temperaturedefinition (no derivation). The application of Joule-Thomson effect to the liquefaction of air and hydrogen by Linde's process.

Liquids and Solutions

6 hours

Viscosity- Definition, mathematical expression, coefficient of viscosity, effect of temperature, size, weight, shape of molecules and intermolecular forces on it.

Surface tension-Definition, mathematical expression, effect of temperature and solute on it.

Completely miscible liquids: Fractional distillation, Tc curves for all the three types, azeotropic mixtures with examples. Critical solution temperature (three types), examples. Effect of addition of salt on CST of phenol-water system.

Immiscible liquids: Steam distillation and its applications.

Distribution law: Statement, partition coefficient and condition for validity of distribution law. Application-solvent extraction.

outco	mes												
Sl no.	o. Course outcome				Pr	ogram	nme ou	utcom	e (POs))			
	(COs)	1	2	3	4	5	6	7	8	9	10	11	12
1	CO1	3	-	3	-	-	2	-	1	-	3	-	2
2	CO2	-	3	-	1	-	2	-	-	2	-	2	-
3	CO3	1	-	2	I	2	-	-	2	-	3	-	2
4	CO4	2	1	I	I	2	-	2	-	-	2	-	-
5	CO5	-	3	I	2	-	3	-	2	-	2	-	3

Course Articulation Matrix: Mapping of course outcome (Cos) with programme outcomes

*1= Low, 2=Medium 3=High

Reference books :

- 1. Analytical Chemistry: Basic Concepts, Priti Malhotra, Ane Books Pvt Ltd, 2021.
- 2. Advanced Inorganic Chemistry, 6th Edition, F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann-John Wiley & Sons, 1999.
- 3. Inorganic Chemistry, ELBS 2nd Edition, D. F. Shriver, P. W. Atkins and C. H. Langford, Oxford Univ. Press 2002.
- 4. Organic Chemistry, Morrison, R.T. & Boyd, R.N. Pearson, 2010.
- 5. Physical Chemistry, Castellan, G.W. 4th Ed. Narosa, 2004.
- 6. Advanced Organic Chemistry, Bahl, A. & Bahl, B.S, S. Chand, 2010.
- 7. Organic Chemistry, Graham Solomon, T.W., Fryhle, C.B. & Dnyder, S.A. John Wiley & Sons, 2014.

- 8. Inorganic Chemistry, 4th Edition, J. E. Huhee, E. A. Keiter and R. I. Keiter, Pearson Education Asia, 2000.
- 9. Analytical Chemistry, Gary D. Christian, 6th Edition, Wiley, 2007.

Title of the paper	Chemistry Practical-I	Course code	CHEMP-01
Total Contact hours/Sem.	56	No. of Credits	02
Duration of the Examination	03 hours	Teaching Hours/ Week	03
Formative Assessment marks	10	Summative Assessment Marks	40

I Semester: Practical - I (Inorganic Chemistry)

Course Outcomes (COs):

By the end of the course, the students will be able to:

- 1. Understand the calibration and handling of the glass wares
- 2. Learn to carryout titrations
- 3. Preparation of a solution of the desired concentration and the desired volume along with calculations to be taught
- 4. Determination of the percentage of the given analyte
- 5. Estimation of binary mixture.

Contents of the Course

List of Experiments to be conducted

- 1. Calibration of glass wares; pipette, burette and volumetric flask.
- 2. Estimation of ferrous ammonium sulphate using standard potassium dichromate solution using internal indicator.
- 3. Estimation of ferrous ammonium sulphate using standard potassium dichromate solution using external indicator.
- 4. Estimation of sodium thiosulphate using standard potassium dichromate solution.
- 5. Determination of the percentage of available chlorine in the given sample of commercial bleaching powder.
- 6. Determination of percentage of manganese dioxide from pyrolusite ore.
- 7. Estimation of the amount of alkali present in soaps/detergents.
- 8. Estimation of potassium permanganate using standard sodium oxalate solution.
- 9. Estimation of nitrogen in an ammonium salt using sodium hydroxide solution and standard oxalic acid.
- 10. Estimation of the amount of carbonate and bicarbonate in the given mixture.

Sl no.	Course outcome				Pr	ogram	ime oi	utcom	e (POs)				
	(COs)	1	2	3	4	5	6	7	8	9	10	11	12
1	CO1	2	3	-	2	2	3	-	1	-	2	-	3
2	CO2	2	-	1	-	3	-	2	-	2	-	2	-
3	CO3	1	3	-	2	-	2	2	-	2	-	2	2
4	CO4	2	1	-	2	-	3	2	2	2	2	-	2
5	CO5	2	-	3	-	2	-	3	-	2	-	2	-

Course Articulation Matrix: Mapping of course outcome (Cos) with programme outcomes

*1= Low, 2=Medium 3=High

II Semester

Title of the Course	Chemistry-II (Theory)	Course Code	CHEMT-02
Total Contact hours/Sem	56	Teaching Hours/week	4 hrs
No. of Credits	04	Duration of Examination	03 hrs
Formative Assessment marks	20	Summative Assessment Marks	80

Second Semester B.Sc. (Chemistry)

Course Outcomes (Cos) :

By the end of the course, the students will be able to:

- 1. Thorough understanding of chemical bonding with special emphasis on ionic, covalent bonding
- 2. Understand and explain the differential behavior of organic compounds based on fundamental concepts learnt.
- 3. Deeper insight of Quantum Mechanics
- 4. Use the concepts learnt to predict feasibility of photochemical reactions.
- 5. Understanding of surface phenomena like surface tension, Adsorption, Colloids

Contents of the Course

<u>UNIT-I</u>

Chemical Bonding

Ionic bond: Lattice energy, Born-Haber cycle, Born-Lande equation (No derivation), problems on it. Calculation of lattice energies of NaCl and MgO, effect of lattice energy on solubility of ionic compounds. Polarization concept, Fajan's rule, polarity and polarizability of ions.

Covalent bond: Valence bond approach; hybridization and directional characteristics of sp, sp^2 , sp^3 , sp^2d , sp^3d^2 . Shapes of BeCl₂, BF₃, SiCl₄, PCl₅ and SF₆. VSEPR theory: shapes of CH₄, NH₃, NH₄⁺, H₂O, BrF₃ and ICl₂. Molecular orbital theory: H₂, He₂⁺, Be₂, N₂, O₂, O₂⁻, O₂²⁻, O₂²⁺, CO and NO (bond order, stability and magnetic properties to be discussed). Bond length, bond angle and bond energy. Polar and non-polar molecules, dipole moment.

Weak interactions: i). Hydrogen bonding: Intra molecular and Intermolecular types, anomalous properties of HF, H₂O, NH₃, alcohols, carboxylic acids, nitro phenols and bio molecules. ii) van der Waals forces: Noble gases and molecular crystals (dry ice, Iodine and solid SO₂)

Metallic bond: Band theory, electrical properties of metals, semiconductors and insulators.

Silicates

Structure of SiO_4^{4-} , classification of silicates based on the structure. Zeolites: structure and applications.

UNIT-II

Aromatic hydrocarbons

Nomenclature. Structure of benzene using molecular orbital theory. Criteria for aromaticity-Huckel's rule. Antiaromaticity. General mechanism of aromatic electrophilic substitution. Mechanism of nitration of benzene, energy profile diagram and isotopic effect. Orienting

12 hours

9 hours

influence of substituents in toluene, chlorobenzene, nitrobenzene and phenol.

Aromatic nucleophilic substitution via benzyne intermediate, mechanism with evidences for the formation of benzyne by trapping with anthracene, Birch reduction. Side chain oxidation of toluene to benzaldehyde and benzoic acid. Oxidation of naphthalene, anthracene and phenanthrene. Diels-Alder reaction of anthracene with 1,2-dichloroethene.

Alkenyl benzenes: Styrene, cis- and trans-stilbenes and their preparations. Biphenyl: Preparation-Ullmann reaction.

Organic halogen compounds

Alkyl halides: Nomenclature. Nucleophilic substitution reactions - S_N^1 and S_N^2 mechanisms with energy profile diagrams. Effect of (i) nature of alkyl groups (ii) nature of leaving groups, (iii) nucleophiles and (iv) solvents on S_N^1 and S_N^2 mechanisms. Elimination reactions - E1 and E2 mechanisms; Hofmann and Saytzeff eliminations with mechanism.

Aryl halides: Preparation by halogenation. Relative reactivity of alkyl, allyl, vinyl, aryl and aralkyl halides towards nucleophilic substitution.

UNIT-III

Quantum Mechanics and Atomic Structure

Review of Bohr's atomic model:

Derivation of expressions for radius, energy and ionization energies of hydrogen like atoms. Numerical Problems.

Limitations of classical mechanics. Wave particle duality, Uncertainty principle.

New quantum mechanics-sinusoidal wave (Explanation). Schrodinger wave equationderivation. Postulates of quantum mechanics.

Significance of the terms; Hamiltonian operator, Eigen function; Ψ (significance of ψ and ψ^2) and Eigen values.

Application of Schrodinger equation to particle in one dimensional box (derivation required), and to the hydrogen atom (detailed solution not required). Expressing the solution as a product of $\psi_{n,l,m}$ (r, θ , φ) = $\psi_{n,l}$ (r) $\psi_{l,m}$ (θ , φ). Explanation on quantum numbers (only qualitative). Radial and angular probability distribution. Orbitals: shapes of s, p, d and orbitals. Contour, probability and boundary surface diagrams of orbital representation.

Colligative properties

Liquid Mixture: Review of Raoult's law, ideal and non-ideal solutions.

Dilute solutions- Review of colligative properties and concentration terms.

Determination of molecular mass of a solute by: (i) Berkeley-Hartley's method (π) ; (ii) Beckmann's method (ΔT_f) and (iii) Landsberger's method. Numerical problems.

UNIT-IV

Photochemistry

Introduction to photochemical reactions, Laws of photochemistry-Grotthus-Draper law, Stark-Einstein law. Differences between photophysical and photochemical processes with examples. Comparison of photochemical and thermal reactions. Quantum yield of photochemical combination of (i) H₂ and Cl₂ (ii) H₂ and Br₂ (iii) dissociation of HI (iv) dimerisation of anthracene. Reasons for the high and low quantum yield. Problems Photosensitization and photostationary equilibrium. based on quantum efficiency. Fluorescence, phosphorescence, luminescence, bioluminescence and chemical sensors.

3 hours

11 hours

5 hours

Jablonski diagram: internal conversion, inter- system crossing. Numerical problems on absorption coefficient and molar extinction coefficient.

Colloids

Definition of colloids. Classification of colloids. Solids in liquids (sols): preparations and properties – Kinetic, Optical and Electrical stability of colloids. Protective action. Hardy–Schultz law and Gold number. Liquids in liquids (emulsions): Types of emulsions, preparation and emulsifier. Liquids in solids (gels): Classification, preparations and properties. General applications of colloids.

Adsorption and catalysis

Introduction. Types of adsorptions. Factors influencing adsorption. Freundlich adsorption isotherm. Langmuir theory of unilayer adsorption isotherm. Applications.

Catalysis –Types and theories (intermediate compound theory and adsorption theory). Heterogeneous catalysis: surface reactions, unimolecular and bi-molecular surface reactions. pH dependence of rate constant of catalyzed reactions. Autocatalysis.

Course Articulation Matrix: Mapping of course outcome (COs) with programme
outcomes (POs)

S1	Course outcome	Programme outcome (POs)											
no.	(COs)	1	2	3	4	5	6	7	8	8	10	11	12
1	CO1	-	3	-	2	-	2	1	1	-	2	-	2
2	CO2	2	-	2	-	1	2	-	2	2	-	2	2
3	CO3	1	2	-	2	1	3	-	1	2	-	3	-
4	CO4	1	-	1	-	2	2	-	2	-	2	-	2
5	CO5	-	2	-	2	-	3	-	3	-	2	-	2

*1= Low, 2=Medium 3=High

Reference Books :

- 1. Concise Inorganic Chemistry, 5th Edition, J. D. Lee, Blackwell Science, 2001.
- 2. Principles of Inorganic Chemistry, B. R. Puri and L. R. Sharma, Jauhar S. P-S. N. Chand & Co., 1998.
- 3. Basic Inorganic Chemistry, 3rd Edition, F. A. Cotton, G. Wilkinson, P. L. Gaus-John Wiley & Sons, 1995.
- 4. Fundamentals of Organic Chemistry, McMurry, J.E., 7th Edition, Cengage Learning India Edition, 2013.
- 5. Text Book of Physical Chemistry, K. L. Kapoor, McGraw Hill Education Private Limited, 2022.
- 6. Introduction to Quantum Theory and Atomic Structure, P.A. Cox, Oxford Chemistry Primers, 1996.
- 7. Text Book of Physical Chemistry, Soni P.L., Dharmarha OP, Dash UN, Sultan Chand & Sons, 2023.
- 8. Organic Chemistry, Finar, I.L. Vol. 1, 6th Edition, Pearson, 2002.
- 9. Physical Chemistry, Puri, Sharma, Pathania, 48th Edition, Vishal Publishing Company 2021.
- 10. Fundamentals of Photochemistry, K K Rohatgi, K K Mukherjee, New Age International, 2021.

4 hours

Title of the paper	Chemistry Practical-II	Course code	CHEMP-02		
Total Contact hours/Sem.	56	No. of Credits	02		
Duration of the Examination	03 hours	Teaching Hours/ Week	03		
Formative Assessment marks	10	Summative Assessment Marks	40		

II Semester: Practical II (Physical Chemistry)

Course Outcomes (COs):

By the end of the course, the students will be able to:

- 1. Perform colorometric titrations
- 2. Know the principle and handling of pH meter, colorimeter, viscometer
- 3. Determination of the density and surface tension
- 4. Study of the variation of viscosity of a solute
- 5. Study of critical solution temperature.

Contents of the course

List of Experiments to be conducted

- 1. Determination of the density using specific gravity bottle and viscosity of a liquid using Ostwald's viscometer.
- 2. Determination of the density using specific gravity bottle and surface tension of a liquid using Stalagmometer.
- 3. Determination of molar mass of a non-electrolyte by Walker-Lumsden method.
- 4. Study of the variation of viscosity of sucrose solution with the concentration of a solute.
- 5. Determination of molar mass of polymer by viscosity method.
- 6. Determination of transition temperature of a salt hydrate by thermometric method.
- 7. Determination of degree of dissociation of KCl by Walker-Lumsden method.
- 8. Determination of critical solution temperature of phenol water system.
- 9. Determination of distribution coefficient of benzoic acid between water and toluene.
- 10. Study of kinetics of the reaction between KI and $K_2S_2O_8$ by colorimetric method.

Course Articulation Matrix: Mapping of course outcome (COs) with programme outcomes (POs)

S 1	Course outcome	Programme outcome (POs)											
no.	(COs)	1	2	3	4	5	6	7	8	8	10	11	12
1	CO1	-	3	3	1	2	-	1	1	2	-	2	-
2	CO2	2	2	-	2	1	-	-	2	-	2	-	2
3	CO3	1	1	-	3	-	3	1	2	2	-	2	-
4	CO4	1	-	1	-	2	-	2	I	2	-	2	-
5	CO5	2	1	-	2	-	3	-	3	-	2	-	2

*1= Low, 2=Medium 3=High

Pedagogy: Teaching-Learning through an intelligent mixture of conventional and modern methods, interactive discussions, organizing various activities, assignments for individual learners as well as for group.

QUESTION PAPER PATTERN First Semester B.Sc. Degree Examination (SEP Scheme-2024-25) CHEMISTRY

CHEMISTRY Time: 3 Hours	Max. Marks: 80
Instructions: Answer Q. no. 1 and any 6 of the following	Iviax. Iviaiks. 60
1. Answer any TEN of the following	10X2 = 20 Marks
a)	10112 - 20 marks
b)	
c)	
d) e)	
f)	
g)	
h)	
i) j)	
s) k)	
1)	
2. Q. no. 2 from Unit-I	10 Marks
a)	
b)	
c) 3. Q. no. 3 from Unit-II	10 Marks
a)	10 Marks
b)	
c)	
4. Q. no. 4 from Unit-III	10 Marks
a)	
b) c)	
5. Q. no. 5 from Unit-IV a)	10 Marks
b)	
c)	
6. Q. no. 6 from Unit-I and II	10 Marks
a)	
b) c)	
	10 Marks
7. Q. no. 7 from Unit-II and III a)	10 Marks
b)	
c)	
8. Q. no. 8 from Unit-III and IV	10 Marks
a)	
b) c)	
9. Q. no. 9 from Unit-I and IV	10 Marks
a)	10 Warks
b)	
c)	
1. Pattern for Question Nos. 2 to 9	
• $4+3+3 = 10$ Marks OR $5+5 = 10$ Marks	
	10